uLIFE

Development journal

Matthieu MICHEL
January, 2025

1 Table of Contents

I Table Of COMLEIESoouieiiiiieiieie ettt ettt ettt ettt et e eb e e e e bt eate bt e st et e sbe et e sbeentenbeeneeneenneenean 1
1.1 TADIES Of FIGUIES...cuviieiieiieiieieree ettt ettt et e e e e steesseessbeesseessaessaesssesssessseanseesseesseensns 2

2 PIOJECT OVEIVIEW ...ttt ettt ettt ettt ettt et b e e b e e st e et e e bt e bt e bt e abteshtesateeateeateenseeebeeeseesmbeenseenbeanseenses 4
2.1 L0 10} 1< L OO OSSP 4
2.2 o0 o1 USRS 4
23 (070311 ¢ 11 SO OSSPSR 4
2.4 TIMEIINE ...ttt et et ettt e s b e s bt e eat e et e e te e sbeesbeesatesnteemteenbeenseanas 4

T o 311 1132V 5
3.1 REQUITEIMENLSviviiieiiiiieiieieesiee ettt ettt et e st esebeesbe e be e saesseessaeesseasseassaessaesseesssessseassessseesseensns 5
3.1.1 Functional TEQUITEMENEScc.eertieriirieeieeitiesteeeiteete et et esteesteesttesateeaeeenteeteesseesneesneesaseenseeseenses 5
3.1.2 Non-functional TEQUITEIMENESccueiiiiiiieitieitieeiie ettt ettt et teesbe et esaeeenteebeenbeeseeees 5
3.1.3 Hardware reqUITEIMENLS.......eevueeriesieereereesteesieestteereeseasseeseesseessaesssesssessseessesssessssesssessseessesssensns 5

3.2 L Ba Tt 6 TS T o DO UURPPR 5
33 IMPlemMentation PLANcooiiiiiiii ettt st ettt ettt ettt ettt beeas 6

I s (110111, 01U 7
4.1 o 4 070] 114 0T\ e USRS 7
O R € o1 LU PRRRURUURORON: 7
4.1.2 DeSi@N & AIAGIAINSc.veevieiieeiieeiiicieereeieesieeseesteetbeebe e teestsesssessseasseasseesseesssessseassesssessseesssesseeans 7
4.1.3 ASSCIMDIY NOLES ...ueeiuiiiieiiieiteeiiesteeteeteete e teestaestbeesbeesbe e seesssesssessseasseesseesseesssessseassensessseesseessseans 9
.14 TESHINE ceeeeeteeieetee ettt ettt et e et e et e st e ettt e bt et e e bt e saeesateeate e te e bt e bt e eneeenteeabeenbe e bt e beenhtesateenteentean 10
4.1.5 Software IMplementation.........ccceeteririerieririereetete ettt ettt ettt et sttt seee b b enee 10

T I T 7 T PSS 13
4.1.7 Improvement and changes NEEAEd...........c.ecvviiviieriiiiiiiieie ettt r e eebeesnes 15

4.2 ProtOtyPE INO2.. .ottt et b e ettt e et esab e e s bt e e bteesabeesabbeesabeesbeeesabeenans 15
0 E {0 Y TSP 15
4.2.2 DeSi@N & IAGIAIMNSc.veeieiiieiieiieeieereereeteetee st esteesaesrbeesbeesseesseesssesssessseasseesseesssesssesssesssessens 15
4.2.3 ASSCIMDILY NMOLESiitiiiieiieeie ettt ettt ettt e st e st eete e te e te e bt e e st e st e eabe e bt e bt e nstesnteenteenteentean 17
.24 TESHINE .eeveeteeieeieestte et et et et e st e st e et e esseense e seeseesseessteenseenseenseeseesseeenteenseanseenseenseensaennaeenseentean 20
4.2.5 Software IMPlemMENtAtION.......cccueiieriiereerieteereereeeeeeteebeesteesteesteestressaeesbeesseesseeseesssesssessseesens 21
N S 7 T USSP 24
4.2.7 Improvements and changes NEEAEAc..ccveriieriiiriiiiieeie ettt s enseeneees 24

5 3D modeling and encloSUIe dESIZN.........ccueeviiriieiieiiieiieere et et e eteestresreereebeesseesseesesessseesseesseessesssnessseens 25
5.1 D O IVES . e eutietie ettt et ettt et e et e et e ev e et e e teesteeetbeesbeesbeesbeestaestbessbesebeesbeesbe e beeataeeabeerbeerbeeraestaearreen 25
5.2 TNEHAL COMCEPL...euvvieeieeiieieeite ettt ettt e ettt et e e e seeesateesseesse e teesseesnseenseanseenseeseessnesnsennsenn 25
53 DIESIZI PIOCESS ..vvieveeerieieeieesiee st et et esteesttesetesnte e seesseesseessaesaseesseesseesseesseesnsesnseanseenseeseesssesnsennsens 25

54 IMALETIA] SELECTION ...ttt sssssesssssssssssssssssssssssssssnnsnsnnnnnn 26

5.5 3D PIANLINE NOTES .. veevietietiestiesterteeteeteeteesseesstessseasseesseesseesseesssessseesseesseesssesssesssensseesseessesssessssenns 26
551 COMSITAIMNES ...ttt ettt ettt ettt st e ettt et e e bt et e sb e e st e tesbeemseebeeseenaeebeemeebeeneensesbeeneantesneans 26
552 SUrface fINISH.cc..coiuiiii ettt ettt e sbe e st 27

5.6 ASSEMDIY It & TEVIEW ...neiitiiieiieiie ettt sttt ettt e s et e st eeate e bt e bt e s bt e eaeeeaeeeneean 27

5.7 IMProvements fOr fULUIE CASESvevviirierierieeii ettt te et et e e e teesteessaessseesseessaeseessnesnseensens 28

6 FINAL VETSION 1..iiiiiitieitie ittt ettt et et et e bt e sh e e ea b e eab e e bt e bt e beesbtesabesateente e beesaeesaneeas 29

6.1 FANAL @SN 1.ttt sttt ettt e bt e s bt e st e et e e bt e bt e bt e saeesaneeneean 29

6.2 WRAL TE AOCS ...ttt ettt ee et h et e bt e e et s bt e e e bt ese et eae et e s bt et e nteeaeens 29

6.3 Performance eVAlUAtIONSooiiiiriiiieeee ettt ettt ettt eneens 29

6.4 Challenges and SOIULIONS.........eeeiieiieiieitetierte ettt ettt ettt et e bt e bt e sbeesaeesateeteesbeesaeesnneens 29

A ©703 1 1o] 113 o)« OO PPUSRURRIR 30
7.1 OS] 511103 s OSSPSR 30
7.2 FUture Of the PrOJECt......couiiiiiiie ettt ettt e sttt b e bt e sneeeneeeneeas 30

LI N o) 1S) 1 La B (1RSSR 31

8.1 DIAtASHEELS ...ttt ettt ettt ettt e a et eeheen e et e ne et e e et et e nteeneens 31

8.2 Bill OF MALETIALS.ceeeeitieieeeee ettt ettt ettt et et e a et e s et ene e beeneeeeeneeneeeaeeneens 31

8.3 SOUTCES AN TETRIEIICESuveetieiieiiieeie ettt ettt ettt et et e st e st eeaeeeteesbeesaeesnteeabeeabeenbeeseenes 31

1.1 Tables of figures

Figure 1: Blocks diagram of the initial desi@n............coouiiiiiiiiiiiiiiiiceeeeee e 6
Figure 2: Prototype N°1 — Charlieplexed LED MatrixXc.ccocereeriiiienienieiiinienieeeeeesieeeeeeeseeeee e 8
Figure 3: Prototype N°1 — 2x11 female headers..........cccocueviiiiniiniiiiniiiceceece e 9
Figure 4: Prototype N°1 — Assembled boardscooooiiiiiiiiiiiiieee e 9
Figure 5: Prototype N°1 — Headers to NUCLEO-FO30RS8 pInoutcccccevieriieenieeiieniceiienieeeen 10
Figure 6: Prototype N°1 — Fully 1it diSplay........ccoceevieriiiiiiiiniiieiceeeee e 13
Figure 7: Prototype N°1 — Half=lit diSplay......c.cccoeeiiiriiiiiiiiniiieeceee e 13
Figure 8: Prototype N°1 — 30 FPS recording (VIA€0)ccceovuiiiiiiiiiiiiiiiiiniceieeceeeeeee e 14
Figure 9: Prototype N°1 — 60 FPS recording (VIA€0)cceeevuieniiiiiiiniiiiiiniceieeeeeeeeeeee e 14
Figure 10: Prototype N°1 — Glider test (VIAO0)......eeoueruiiriiriiniieieeieeieeieetesiteeee et 14
Figure 11: DC bias characteristics of the selected 10 pF ceramic capacitor (Samsung Electro-
IMECRANICS, S.0.) weieiiiieiiieeiiie ettt e e ettt e et e e et e e st e e e tee e steeessbee e saeeesbeeasaaeentaeeenseeeanreeennreeenns 15
Figure 12: Prototype N°2 — POWET CITCUILTY ..c..eeiiiiiiiiiiieiiieeiieeiie ettt 16
Figure 13: Prototype N°2 — STM32G431 and its peripheralscccooervierieneniienienineneeeciee 17
Figure 14: Prototype N°2 — Front view of the assembled boardccccoveeveriiiniininiiniinice 18
Figure 15: Protoype N°2 — Back view of the assembled board..............cccccooiiiiiniiiiiiniiiiiceee 19
Figure 16: Prototype N°2 — Video of the first demo............cooiiiiiiiiiiiiiieee 20
Figure 17: Prototype N°2 — System layered architeCturecoceeeeveriineeneniicnienienieseeceeeeee 21
Figure 18: Prototype N°2 — UML Class diagramccccocuerierierieneenienienieeieeiesieeie s 22

Figure 19: Prototype N°2 — Sequence diagramcoceevuerierierienienieienienieeieeee et 23

Figure 20: Front and back views 0f the tOP COVETccvuiiiiiiiiiiiieieieeieeeeeeee e 25
Figure 21: Front and back view of the bottom plate.............cccvieiiiieiiiieiieeeeeeeee e 26
Figure 22: Full 3D view Of the ProduCtcooiiiiiiiieeee et e 26
Figure 23: The gap between the tWo COVET PATLScoueiviriiriiiiiierieeieee e 27
Figure 24: Scratches on the back 0f the CaSeeooueriiiiiiiiiiiiiee e 27

2 Project overview

2.1 Objective

I recently made an implementation of the Game of Life from John Conway in C++ for a school project
and I found it interesting, I was mainly amazed by how complex can such a simple get.

I then thought to myself I had to make some hardware related to this game. When I was watching
bitluni’s videos, it popped in my mind like an obviousness, I had to make a keychain with the game of
life on it! This way not only will my key ring become way cooler, but I’ll have a great conversation
starter and work to show when questioned about my hobby.

2.2 Scope

The project should consist of an LED matrix with simple controls allowing the Game of Life to run on
it. It will display preprogrammed patterns, and the user should also be able to display a randomized
grid, also known as “soup”. It will also have a cover to protect from keys and other items. Speed
controls will be available and there may be an Easter egg.

The project will make use of charlieplexing. Charlieplexing is a technique used to access many LEDs
with few pins using tri-state logic. This will allow us to control our matrix with a few I/O pins from
our microcontroller.

2.3 Constraints

The project shall meet the following criteria:

e The product should be no larger than 3x4cm.

e The LEDs should not blind the user.

e The BOM shall not exceed €30.

e The product should have a protective case or cover.
e The product should not feel hot to touch.

2.4 Timeline

This project does not have any time constraints.

3 Planning

3.1 Requirements

3.1.1 Functional requirements

The functional requirements are actions the system does. They specify functions, features or tasks the
product must perform. They are often described as clear tasks.

The functional requirements are the following:

e The product must be USB-C powered.

e The onboard MCU should be able to be reprogrammed.
e The product must have physical controls like buttons.

e The product must include speed control.

3.1.2 Non-functional requirements

Non-functional requirements describe how well the system performs, operates, or adheres to certain
constraints. They are often quality attributes or external limitations. They often define standards rather
than tasks.

For our project, they are as such:

e A LED should not consume no more than 8mA 20 mA (peak).

e The display should be able to reach 60 fps.

e The display should be visible in sunlight.

e The whole system’s current consumption should not exceed 250 mA.

e The enclosure must withstand minimal scratches.

e The enclosure must be transparent.

e The product must not directly expose the user to lead solder or any other toxic compounds.
e The PCB must be designed to allow for single-sided assembly.

e The circuit must make use of the least amount of unique parts to reduce assembly costs.

3.1.3 Hardware requirements
Hardware requirements are requirements based on needed parts for the project.

We have the following parts:

e STM32F030R8T6, for large 1O count.
e (0402 white LEDs, as small LEDs are a necessity here.

3.2 Initial design

For the design of this project, I thought about making a game console-like circuit, with power at the
bottom of the board, followed by the MCU and two buttons for controlling it. Above we will have the
LED matrix in all its glory.

Here is the blocks diagram:

USB-C 3Vv3 LDO MCU . . .
Connector 5V ——»| Regulator 3V3—»| (STM32) harliexplexing—| LED Matrix

Figure 1: Blocks diagram of the initial design

I find this architecture easy, and it should make layout and routing rather easy, except for that 400
LEDs matrix...

3.3 Implementation plan

The plan is here to first make the LED matrix with headers and use a NUCLEO-F030RS8 board to
check the feasibility of the project and how well frames can be displayed on the matrix.

The second step is to make the final product, putting down a STM32F030R8 with a crystal on the
board as well as power and buttons, giving us the full fledge product.

Lastly, we’ll design a cover for the keychain to protect it against external inconveniences.

6

4 Prototypes

4.1 Prototype N°1

4.1.1 Goal

The objective of this first prototype is to check the feasibility of our concept by checking if we can
successfully display things on our display.

4.1.2 Design & diagrams

To have numerous LEDs on a single board on only 21 GPIOs, we’re going to make use of
Charlieplexing. Charlieplexing is a technique making use of tri-state logic to control a lot of I/O rather
easily.

We first put LEDs between each pair of GPIO, excluding pairs where a = b. For example, for 3 pins

we would have: 1/2, 1/3, 2/3, 2/1, 3/1, 3/2. We then utilize the three different possible states of our

GPIO pins: high, low, and high-Z (or disconnected). We can put every pin in high-Z, so the MCU

won’t be trying to drive the pin low or high, effectively disconnecting it from the circuit. At this point

we choose two pins, set one high, and the other low and we have a working LED.

This way we can control, with N the number of GPIOs, N(N — 1) with Charlieplexing as opposed to
2

only NT LEDs with standard multiplexing. We can even find the number of required pins the number

of LEDs is known with the following equation: n = [1++vVL] In our case we then need 1 + V400 =

21 pins.

More can be read on Wikipedia’s article on the matter (link in the references).

To generate our LED matrix, we’re obviously not going to do it by hand. Fortunately for us,
psychogenic on GitHub made a script to generate them for us. After use, we end up with this:

uLife

Matthieu MICHEL

CAT,
(e o1 [3] 23 W % o7 W W 10 5y 1z 15} Bie oI5 016 07 018 B19
Wo00SUNG N-100SUM] XA-100SUWQ XL-IGOSUWQ Xi-100SUW] Xi-i00sUwq Xi-iodsuwq Xi-iogsuWq Xi-i0gsUw] Ni-100SUW XL-GOOSUWG XL-AOOSUWG K-AOOSUWE K-0OSUWq KL-logswq XL-00SUMC XL-ioOSuNq -iodsuwd K-1oesuwg
Ta T T & s 7 i3 T & Tt % % : % Ta % % ad
cATL, : : +
Bio o i o o5
1005w - 0050w Su-tousuw Su-1005uwd i-10051
=z : s T & =z :
Lo . : . H H H H ; ; H H ; ;
[R5 1 H Tz ZE) W T gy o o % e [T o o 5 it
-eosuwd eseosuwd t-to0suwd da-100muvd Xi-1008Uwd XL-L00SUK ia-tossuvd u-1008uvg HL-100Suwd XL-l008uwq -l008uwg W-1005uwd J-toosuwd XL-00Suwg XL-ioosuwg i-iooswvd Ki-togsuvd
K : B i B e e e B T e e
L e, : : : : . : : : : :
[—ge % 57 e 578 o o 75 o o
L1050 - 10050 30-10050w Sa-100svg Hi-toosuwq -loosuwq iu-icosuwd HL-106SUwq Xi-100Suw -toosuw u-toesuwe
- i w s s 3 E w S o $
CATHS, H . H H H . H H H
[R5 o) o8 5 [o8 i) £ 55 I 2 5 B o3
i-i00suwd i-100Swd Xi-2008u Se-soosowd u-toosuwd i-tonsui S-100suve Wi-toosueq Wi-iooSuwq n-iossuwd W-toosuwq Xl-so0suwd Xi-io0suwd Xi-sooswwd hL-i0esud
o 7 b b b & O T T & bz e T & i
. CATHE, . . H H H : H H M . H H M -
Gl — T T g i g1 — 5w 08 5w T 57y T T
i-l00suwq i-i00sUwd XL-10osuw Ju-toosivg i-toosuwg XL-10050 u-100suve Wi-t00suwq i-l005uwq Ja-lcosuwd W-100suwd XL-100suwQ XL-1o05uwg i-1ooswvd h-1ossig
o o o o o : o o o o o : o o
cangy
(e ene T war o Tt It T - o s
i-l00suwy i-1005Wd L-1005U S-100suve Wi-toosuwq -loosuwe i-l0osuwd HL-l06SUwq Xi-100Suw - 0esiwg
= i b : = = i = 7 e e
canes
SHELY. > ——F13% TP TR TER oI T By T B BT e b TPIsL o
i-i003uwd i-1003wd Xi-20080w =1 Qe i-10050 S-1005uwe Wi-to0sued Wi-io0Sueq -sesuwd W-s00Suwd XL-s00uw o003 i-soesue
s T b i b & O T T i 2 e i i
CATH S, — H - H H M H H
Bis3 o s Bis8 o H o163 T oiEn TBiEs TEiEE oeT T oiER BT BT
i-l005uwq i-1005wd Xi-1005uw Sa-1008uvg i-1005Um H Su-1005uve Wi-t00suwq i-ioosuwq Ja-toosuwd -1005wd XL-100suw -1005uwq u-1oesuvd
&« F7a % i (7% -« & & 7% &«
.
b

T : : ;
Dty = = : - e
-tootd u-looiwd -tonsud -toosu Su-toesd - o toesd -toasum
: T et h T T &
CATM AR : M N N N
EED e 1w T g L
S taosd n-sossuwd * R P
s s e s

xu-1005uvg

%

T
- 10050

1-1008uwe]

&

—mE
s

g
- 1005w

v

gy
Ja-10suvd

Ty
- 10050
P

s

=
Ju-100suve

ek gk

-
,L..mm]
I e

|

my
L-10050w1

b

!

) L
-1005uwq Ju-tossuwd

me
Sn-1005Uwg

&

i
XL-10051w
«

1%

TBEeT
u-1005uwg

%

23]
Sa-1005uwe

&

029
Su-100suwe

]
L-10080
a

&

[
L-10050
%

a-10050m

%1
L-10080wt
7

308
a-10050w

w8
J-10050vg

T i)
- 1005w Sa-1005uwg

Wi
- 1005w
7%

Y&

i
S-1005uve

]
L-10050w

riy
L-10050

&
o
n-10050w
1%

g
Sn-1005uwg

T

T T
- 10050 - 10050
7% 7%

BE7
L-10050wt
7
=3

o5
X-1008u
7

oas
Sa-1005uwe

&

e
- 10050w

T

s
XL-1008w

b7

oI
S -1005uwe]

T

o
Sa-100suwd

o
- 1008w

1%

o0y
S-100suwe

s
-10050

& 1%

To%T
a-10080w

B

T om
XL-10850w

o
L-1008w
T

Y
Jn-1050wg

i
-10050w0]

%

TRLT

T 3T
L-10050w Sa-1005uwg

T
- 1005w
5%

[

THALLS.

TG

]
S-10050vg

LT,
CRRLED
CARLTEZ
CHRLTEY

i
n-10050w

CHRLTIS

i
HL-10050w

7
&

oI
L-1005Uwt

«

CHRLIT

CARLTI8
[EINAT)

Figure 2: Prototype N°1 — Charlieplexed LED matrix

We will mention the presence of 21 rows, since the diagonal is absent, we must add another row and
shift them up to get a full square matrix.

I then added two female headers to access our matrix, one with 100 Q and the other with 220 Q resistors
to test different series resistors.

uLife Matthieu MICHEL

CHRLY_L >—R+—[(00R— 2 [] CHRLY_L >—r22[ooR——+ |
CHRLY_2 >—R2—[L00R—2 1= CHRLY_2 >—R23—P20R——=2
CHRLY_3 »—R3—{L00R——>F CHRLY_3 »—R24—P20R——>2 1
CHRLY_& >—R&—{LO0R——= CHRLY_& »—R25—P20R——=1-
CHRLY_5 >—R5—{[T00R——> | CHRLY 5 >—R26— 220"+
CHRLY_6 »—Ré—[LO0R} g CHRLY_6 »—R27 208} g
CHRLY_7 R7—{LOOR} 3 CHRLY_7 »—R26—220R] 3
CHRLY_B Re—{LO0R . CHRLY_B »—R29—{220R o
CHRLY_9 Ro—{LO0R CHRLY_9 R26—[Po0R
CHRLY_10 >—R+6—[To0R—0 CHRLY._10 »—R3+ o020
CHRLY_11 >R+ —{LO0R———+1- | J1 CHRLY_11 »—R32—p20R——+t | 12
CHRLY_12 »—R+2 —JT00R——2F | DS1023-2*115F11 CHRLY_12 »—R33—[P20R——12L | DS1023-2*115F11
CHRLY_13 »—R4+3—{LO0R—— CHRLY_13 >—R34—p20R—3 1
CHRLY_14 »—R+4—{TOOR———21 CHRLY_14 »—R35—[220R——+
CHRLY_15 >—R4+5—[LOOR——=2 CHRLY_15 >—R36—[220R——21
CHRLY_16 >—R+6—[L00R—L0 CHRLY_16 »—R37—[po0R—26
CHRLY_17 »—R+7—{LO0R——=1 CHRLY_17 >—R38—[20R——7
CHRLY_18 »—R48—[L00R}—8 CHRLY_18 »—R39—P20R}—3
CHRLY_10 >—R+9—[L00R—12 CHRLY_10 >—Rke—poop—12
CHRLY_20 >—R26—[L00R—22 CHRLY_20 >—Rér+—po0R—29
CHRLY_21 »—R24+—{L00R g; CHRLY 21 »—R42 {2208 g;
GND GND

Figure 3: Prototype N°1 — 2x11 female headers

Those resistors are calculated for 2 and 1mA respectively.

PCB layout will not be discussed here as it is not relevant.

4.1.3 Assembly notes

I was definitely not going to assemble this myself, as the chance to reverse an 0402 LED is very high
(and the chance of me going insane is non-negligeable too). I made use of JLCPCB’s assembly service.
With a good coupon, it came down to €12.58 shipped for two assembled boards and the leftover PCBs.

=Q
O
o
(o]
(o]
(o]
Qo

(o]
(o
of
(o}
Q
(o f
(o
Q
Q
Q
Q

OOOo

Figure 4: Prototype N°1 — Assembled boards

Boards came clean, white LEDs have a small yellow tint on the lens, but it may not be considered an
issue.

uLife Matthieu MICHEL

4.1.4 Testing

To test our matrix, we’re going to wire it up to our NUCLEO-F030RS8 according to the table below.
No specific thinking has gone into the selection of used pins.

Header pin NUCLEO pin Header pin NUCLEQ pin
2 Bl 1 BO
4 B3 3 B2
6 BS 5 B4
8 B7 7 B6
10 B9 9 B8
12 B1l1 11 B10
14 B13 13 B12
16 BI15 15 B14
18 Cl 17 Co
20 C3 19 C2
22 NC 21 C4

Figure 5: Prototype N°1 — Headers to NUCLEO-F030RS8 pinout
Note: this is 1:1 to the header itself, indifferent of each side.

4.1.5 Software implementation

Software-side, I implemented first a function to set back all inputs to reset state (equivalent to input
mode) using registers for faster operations.

void Charlie Clear() {
// Reset GPIOB
GPIOB->MODER = 0x00000000; // Set all pins to input (reset state)
GPIOB->OTYPER = 0x00000000; // Set all pins to push-pull (default)
GPIOB->0OSPEEDR = 0x00000000; // Set all pins to low speed
GPIOB->PUPDR = 0x00000000; // No pull-up/pull-down resistors

// Reset GPIOC
GPIOC->MODER = 0x00000000;
GPIOC->0OTYPER = 0x00000000;
GPIOC->0OSPEEDR = 0x00000000;
GPIOC->PUPDR = 0x00000000;

}

Code 1: Prototype N°1 — Charlieplexing clear function
Note: this resets the whole GPIO B and C ports, meaning we can’t use C5 to 15 right now.

We then have a simple method, taking in a GPIO port, pin and number and from that, setting the pin
type as well as its state:

void Charlie SetPinState (GPIO TypeDef* GPIOx, uintl6 t GPIO Pin, int state)
{
GPIO InitTypeDef GPIO InitStruct = {0};

if (state == 1) { // Set as Source (HIGH)
GPIO InitStruct.Pin = GPIO_ Pin;
GPIO InitStruct.Mode = GPIO MODE_OUTPUT PP;
GPIO_InitStruct.Pull GPIO NOPULL;
GPIO InitStruct.Speed = GPIO SPEED FREQ LOW;
HAL_GPIO_Init (GPIOx, &GPIO_InitStruCt) 2
HAL GPIO WritePin (GPTOx, GPIO Pin, GPIO PIN_ SET);

} else if (state == 0) { // Set as Sink (LOW)

10

uLife Matthieu MICHEL

GPIO_InitStruct.Pin = GPIO_Pin;

GPIO InitStruct.Mode = GPIO MODE OUTPUT PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;

GPIO InitStruct.Speed = GPIO SPEED FREQ LOW;

HAL GPIO Init(GPIOx, &GPIO_InitStruct);

HAL GPIO WritePin(GPIOx, GPIO Pin, GPIO PIN RESET);

} else { // Set as High-Z
HAL GPIO DelInit (GPIOx, GPIO_Pin);
}

}

Code 2: Prototype N°1 — Function to set a pin state

And this is where the fun begins. Because now, we must find a way to address each LED and since the
LEDs’ pins don’t follow a linear pattern, the only (and sad) way to address them with (x, y) is with a
lookup table. And this is where I’'m glad to be in 2025 and have Al tools because with Claude Al I
managed to get my lookup table with rather low efforts:

// LED Matrix Position to GPIO Pin Mapping
// Format: {HighGPIO, HighPin, LowGPIO, LowPin} representing (high,low) charlieplex pairs
typedef struct {
GPIO TypeDef* highPort;
uintl6 t highPin;
GPIO TypeDef* lowPort;
uintl6 t lowPin;
} CharliePinMapping;

CharliePinMapping LED Matrix[][20] = {
// Row 0 - Pattern: (1,2) to (1,20), then (2,1)
{

{GPIOB, GPIO PIN 0, GPIOB, GPIO PIN 1}, // (1,2)
{GPIOB, GPIO PIN 0, GPIOB, GPIO PIN 2}, // (1,3)
{GPIOB, GPIO PIN 0, GPIOB, GPIO PIN 3}, // (1,4)
{GPIOB, GPIO PIN 0, GPIOB, GPIO PIN 4}, // (1,5)
{GPIOB, GPIO PIN 0, GPIOB, GPIO PIN 5}, // (1,6)
{GPIOB, GPIO PIN 0, GPIOB, GPIO PIN 6}, // (1,7)
{GPIOB, GPIO PIN 0, GPIOB, GPIO PIN 7}, // (1,8)
{GPIOB, GPIO PIN 0, GPIOB, GPIO PIN 8}, // (1,9)
{GPIOB, GPIO PIN 0, GPIOB, GPIO PIN 9}, // (1,10)
{GPIOB, GPIO PIN 0, GPIOB, GPIO PIN 10}, // (1,11)
{GPIOB, GPIO PIN 0, GPIOB, GPIO PIN 11}, // (1,12)
{GPIOB, GPIO PIN 0, GPIOB, GPIO PIN 12}, // (1,13)
{GPIOB, GPIO PIN 0, GPIOB, GPIO PIN 13}, // (1,14)
{GPIOB, GPIO PIN 0, GPIOB, GPIO PIN 14}, // (1,15)
{GPIOB, GPIO PIN 0, GPIOB, GPIO PIN 15}, // (1,16)
{GPIOB, GPIO PIN 0, GPIOC, GPIO PIN 0}, // (1,17)
{GPIOB, GPIO PIN 0, GPIOC, GPIO PIN 1}, // (1,18)
{GPIOB, GPIO PIN 0, GPIOC, GPIO PIN 2}, // (1,19)
{GPIOB, GPIO PIN 0, GPIOC, GPIO PIN 3}, // (1,20)
{GPIOB, GPIO PIN 1, GPIOB, GPIO PIN 0} // (2,1)

by
1/

I o

Code 3: Prototype N°1 — Part of the lookup table

And this is (ironically) the hardest part done. Now a little function taking an item of our lookup table
and do the magic:

void Charlie_SetLED(int x, int y) {
// Get the corresponding high and low GPIOs from the table
GPIO TypeDef* highPort = LED Matrix([x] [y].highPort;

‘ uintl6 t highPin = LED Matrix[x] [y].highPin;

| GPIO TypeDef* lowPort = LED Matrix[x][y].lowPort;

11

uintl6 t lowPin = LED Matrix([x][y].lowPin;
Cﬁarlieiclear();

// Set the high and low pins

Charlie SetPinState (highPort, highPin, 1); // Set highPin as HIGH (source)

Charlie SetPinState (lowPort, lowPin, 0); // Set lowPin as LOW (sink)*/
}

Code 4: Prototype N°1 — Pin setting function

And now we can control our matrix using (x, y) coordinates like a regular grid.

Now onto the actual displaying part, since only one LED can be on at a time we need to cycle through
all the LEDs fast. To achieve a 60 Hz refresh rate, we need to update our whole display every % =
0.017 s = 17 ms and since we have 400 LEDs, we need to spend % =425Xx107%s =425 ps
per LED.

Knowing this, we can set up a timer and an interrupt to kick in every 42.5 us. To accomplish this, we
set up TIM3 on a 2 MHz clock using a prescaler of 23, originating from this formula:

System clock

P = -
rescaler Desired timer clock
Applied to our case:
8x10° o3
2x106)

This gives us a timestep of 0.5 pus.

A timer 1s simply a counter going up by one every time it ticks, we must then determine the ARR, for
AutoReload Register, also known as the counter period. When our timer reaches this value, our
interruption will fire, and it will reset the counter back to zero. This effectively means that our timer’s

interrupt will fire every ARR X 0.5 ps in our case. We already determined that we need to update a

LED every 42.5 us, dividing this timestep by our tick length, 0.5 ps, will give us our ARR: %;5 = 85.

We can easily, based on the ARR and prescaler, find to what refresh rate our display is on using the
formula:

fSysClock
ARR X (Prescaler + 1) X Ny gps

fdisplay =

Using the values calculated above, we are given a 58 Hz refresh rate, which is enough.

We also need to enable the TIM3 global interrupt in the NVIC settings. After doing, we can simply
create a global variable, a 2D array, representing our display and in the interrupt, update each LED
according to this 2D array.

void TIM3 IRQHandler (void)

{
/* USER CODE BEGIN TIM3 IRQn 0 */

/* USER CODE END TIM371RQD 0 */
HAL TIM IRQHandler (&¢htim3) ;
/* USER CODE BEGIN TIM371RQD 1 */
if (led index >= 400) {

led index = 0;

uLife Matthieu MICHEL

}

int x

index to coords[led index][1];
int y ;

index to coords[led index] [0]

Charlie SetLED(x, y, displayl[x]I[y]):

led index++;
/* USER CODE END TIM3 IRQn 1 */
1

Code 5: Display refreshing

We will note the usage of a pre-computed index-to-coordinates map to avoid unnecessary computation
during the refresh.

I then proceeded to make a simple implementation of the Game of Life using the standard rules. We
won'’t detail it here as it’s not relevant.

4.1.6 Review
This prototype effectively fills most of the functional parts.
Let’s see first some pics of the whole display lit, and half lit, under a desktop lamp:

| Z :
’ 4 ;o yoos
Vk
e T A SN Seiheage
Figure 6: Prototype N°1 — Fully lit display Figure 7: Prototype N°1 — Half-lit display

Th display is flicker-free to the human eye at our refresh rate but is not against a camera. Below are
two videos comparing how it looks from a 30 and 60 FPS recording (clickable videos).

8

&4

o
‘ PEODODIES
AN

]

Figure 8: Prototype N°1 — 30 FPS recording (video) Figure 9: Prototype N°1 — 60 FPS recording (video)

And finally, what we’ve been all waiting for... A real demonstration! (Again, clickable video)

B £ A AR AL LA A A A
:' ';’ L L LR L LA LR LAAAAALA A
B 4

COPOOPITIPPOOPOLIPIY
POLOPOPOFTIIPPIIPEY
" PIOTIVOIOIOCIIIIIIP
‘”lttlltl"rIllfl"ll
IO OOTIOIPOOOIIOPIY

p :: FOOOPOTPIPOOPOIIIII?
POOOPOIVIPIIOOOIOOIIOPY
lll'lllllll'llllrll.
lllfll!ll'lflll\"("’
CPPPOPIT OISV IOLPIPY
.,l!r!'l’ll"’lllllllo
COIPOIIPOPICTOPOIPIY
..I"'ll'lll'll’!’IIIO

n OOV ITITP ISP IITOP?

e POVIOCIIIIIITOIIIII S

v -r"!',""”",”"’&
N e PP COIPIPOOIPIIII OISO
u OOCOSIOOOVOITOOIIIVS

Figure 10: Prototype N°1 — Glider test (video)
And nope... I didn’t alter the speed of the video... It’s real speed...

Well, we can conclude from this first prototype that it “works” but the screen is rather dim, hardly
seeable against a desktop lamp and not at all in sunlight. I overlooked the fact that LEDs were going
to be one for a brief period and calculated the resistors for steady operation.

14

https://www.youtube.com/embed/NZbbPOKOWwU?feature=oembed
https://www.youtube.com/embed/_qOsv1wVFl4?feature=oembed
https://www.youtube.com/embed/HoQbYuGdGHU?feature=oembed

And the simulation, despite heavy optimizations, is astonishingly slow, mainly because I overestimated
the capacities of our poor STM32F030R8.

4.1.7 Improvement and changes needed
Two big improvements are needed in the next revision:

1. Brighter display: this can be done by lowering the series resistors used on GPIOs, making use of
their full 20 mA current source/sink capabilities.

2. More raw processing power: we’re going to change our MCU for a more powerful one. The new
one will be a STM32G431CBU6, while being twice the price of our first contestant, it has a
CoreMark score 5 times greater than the FO30R8 (106 v/s 569), and a clock 3.5 times faster, going
from 48 to 170MHz.

4.2 Prototype N°2

4.2.1 Goal

The proof of concept being successful, this prototype will aim to be the final product by incorporating
the needed changes as well as power circuitry and controls.

4.2.2 Design & diagrams

For this design, we first have the powering circuitry. It consists of a USB-C connector with 5.1 kQ
resistors on CC pins for C-to-C and a (very) small TVS diode to protect against voltage spikes
originating from ESD. There is then a 250 mA LDO voltage regulator (XC6206P332MR-G) dropping
down the voltage from 5 V to 3.3 V, with 10 puF ceramic capacitors (CLOSA106MQS5NUN) on each
side.

According to Samsung’s data, we’re seeing a DC bias of —76 % at 5 V (2.4 uF real capacitance) and
—62 % at 3.3 V (3.8 uF real capacitance). This should be enough for us, LDO regulators often
requiring a single microfarad and IC decoupling not needing much more.

20

NN
-60 \
80 \

-100

AC(%)

0 2 < 6 8
DC Voltage(Vdc)

DC Bias Characteristics
LCR meter, 1kHz, 0.5Vrms

Figure 11: DC bias characteristics of the selected 10 uF ceramic capacitor (Samsung Electro-Mechanics, s.d.)

15

We do also have a 100 pF tantalum capacitor for bulk capacitance.

JSB—C CONNECTOR & LDO
J1
TYPE-C-31-M-17 +5V
VBUSS +5V U1 +3V3
DO XC6206P332MR-G
PESD5VOX1BCSFYL 31y vol2
c1 & % | c2 + C3
a CC19 10uF T - T 10uF T 100uF
o o CC2s o
&] ! <
- g GND GND
~
GND

Figure 12: Prototype N°2 — Power circuitry

And to finish it we have our microcontroller implementation. It consists of decoupling capacitors, the
same used for the voltage regulator, and a low-pass filter with f, = 503.3 kHz for VDDA. We also
have four programming pads for SWD (VCC, GND, SWDIO and SWCLK) to use with a ST-Link.
Two buttons are also present in a pull-down configuration. Since they are not used anywhere else than
in the microcontroller, we’ll use the pull-ups resistor from the latter.

Finally, we have the star of the show, our STM32G431! It’s powered by an external 16 MHz crystal.
The crystal load capacitance is calculated using the following formula: C,qq = (CL - Cstmy) X 2
with Cy,44 the capacitance required for each capacitor in pF, C; the load capacitance given in the
crystal’s datasheet in pF and Cgrqy the parasitic capacitance from the board itself, usually estimated
to be around 2 to 5 pF. With C;, = 9 pF! and Cgtyqy, = 2 pF, we get: Cipqq = (9 — 2) X 2 = 14 pF
per capacitor. We will choose COG ceramic capacitors to ensure stable capacitance across a wide

temperature range. 14 pF being not available is the basic parts list from JLCPCB, 15 pF was selected
instead, for non-critical applications, this shouldn’t be a problem.

It’s also good to note that the pins distribution may seem random but was adapted to facilitate routing.

! Datasheet specifies 10 pF, while the LCSC page specifies 9 pF. Using 10pF gives Cj,qq = 16 pF, hence the selection of
the 15 pF capacitors.

16

uLife Matthieu MICHEL

STM32G431CBUG pC

=
+3W3 +3 +3.3VA

| V3 . |
| L1 |
| E 10nH :
: cs c7 = o |
: 10uF 10uF 10uF 10uF I
| [
| |
| |

GND GND
___________________________ -
DECOUPLING IWT +3.3VA
_________ |
| +3V3 | 3.3 ? T T
VA
| | * Jg=l
A SEen
[}
| e Bweer+ =775 paofBx
| swDio | PAL
2 oTP
| 2 *1pe1o PAZ EF
| swelk | X1 pasht BTN2
| M _oes 16MHz HSE_IN 5 pro paa k2 BTNL
| . HSE_OUT PFL PAS
| [: ||:||‘L‘ PAG
PC4 PAT
| | CHRLY_15 ’g 5 CHRLY_14
[e L Lawn | L c6 2pcs pas B2
j o | 9 T N T e CHRLY.B _ 38pc1p pagpl CHRLY.L3
| PORGRAMMING I CHRLY_7 40 PC11 PALD 52 CHRLY_12
I PADS < »2{pe13 paq i3 CHRLY 11
__________ »31pcis PAL2 b’ SHALLLD
GND >tpcis pa13 B8 !
I pais B2 SWCLK
I
i SWi | ArBo patspe CHRLY.D
| T5-11095-C-E | PB1
| | PB2
e o i CHRLY.6 “hg] oo
| CHRLY.5 42
! w2 | CHRLY_& E s
| 15-11095-C-§ | CHRLY.S 43 ppe
| CHRLY.3 4l ppe
| sz - | CHRLY.2 45|50
| ° | CHRLY 1 4f| oo
I ' CHRLY_21 47
i | CHRLZL_Tpag
GhD | % PB10
: | CHRLY 20 24 oo
Ve i CHRLY_19 e
BUTTONS CHRLY_18B e
CHRLY_17 A
CHRLY_16 28 oo
w
(7]
>
o]
T w2
STM326431CBUX

Figure 13: Prototype N°2 — STM32G431 and its peripherals

We of course have the LED matrix, but it’s the same as Figure 2: Prototype N°1 — Charlieplexed LED
matrix so we won’t detail it right here. We’ll just note the decrease of the series resistors from 11 and
22 Q to just 1 Q. This will allow more current to reach the LEDs and make the display a bit brighter,
while keeping our current sources, the GP1Os, safe from any short-lived current spike.

4.2.3 Assembly notes

Please note that 5 boards were assembled, all numbers are for an assembly of 5 boards.

I am clearly not assembling this again by hand, so we’ll make use of JLCPCB’s assembly services
again. The trick to saving money on assembly is to use their basic parts library, otherwise you get a $3
fee on every part not in this library, no matter the number of boards assembled, nor the number of this
part used. So, the selection of parts was heavily based on this list.

We only have five parts who are not on this list:

e The STM32G431CBU6

e The TVS diode (PESD5VOXIBCSFYL)
e The LEDs (XL-1005UWC)

e The USB-C port (TYPE-C-31-M-17)

e The buttons (TS-1109S-C-E)

That’s a whopping $15 in fees, shared between our 5 boards that’s a meagre $3 per piece.

The rest of parts were either bought from their stock or from other users selling their idle parts, this
trick also allowed us to save a few bucks on parts.

The last trick I had up my sleeve was obviously to make use of economic assembly and sadly this is
where we had to sacrifice the 4L PCB for a 2L. Economical assembly is available only for a selected
set of solder masks, surface finish and number of layers. And since black solder mask was absolutely
needed for the esthetics of our product, we had to fall back on 2L since it’s only with 2L that black
solder mask is available for economic assembly.

All of this takes up to the final price. For five 2-layer, lead-free HASL, black solder mask boards, we
spent €3.47 and for economic assembly, including the setup fees, feeder fees and parts cost (€25.37),
we spent €40.72. LEDs alone account for more than 50 % of the total parts costs.

In the end we spent €10.61/board, including VAT (20%), excluding shipping. Find below pics of the
gorgeous, assembled boards:

LA 84888888888808
VLRV LU9988958088%
LIV 888398% S
LELLLLLLLV008988990 S
LULLRB9839888838838%
VL9049 885838%% Y
SR80 8S
VL0353 93388%S
VLBV 9839833838 %
VRVVLLL998980883959399%
VLRV 09 Y,
VULV 89595999999Y
VLVXLLLBLB8599599939%9%%
VLELEVLLLLL5999995999Y
VLV 29999599,99%
LOLVLLVLBVULLLLRB 09959999,
VULV 99989399%,

Figure 14: Prototype N°2 — Front view of the assembled board
18

=
E
=5
m

DIO CLK

lieyisnr Aq peudiseq

PUBIJ Ul E> IM
DESIGNED WITH

aa

GNDVCC

Figure 15: Protoype N°2 — Back view of the assembled board

uLife Matthieu MICHEL

4.2.4 Testing

Testing this board was very simple: solder four wires and see if the puC is alive. Spoiler: it is. The
second step was to upload some random testing code and indeed this was a great success, see below
the clickable video of the demo built the same day:

s

Figure 16: Prototype N°2 — Video of the first demo

Aside from that, testing was done, and it was finally time to build the firmware.

20

https://www.youtube.com/embed/W9zSUr9HWnE?feature=oembed

4.2.5 Software implementation

Rather than describing the code in a boring old-fashioned way block per block. I propose instead this
time to take a global view on the project using diagrams. This will help to see the firmware on a larger

scale.

But before, two important notes:

e The display refresh rate has been increased to 120 Hz. The G431 has enough computing power
to keep up and it allows for nicer recording.
e The random grids are generated using the True-RNG module from the G431, guaranteeing
unique grids each time you randomize the game. There are 2*°° grids possible (
), meaning you’ll only get grids no one had and will have in the whole universe?!

Let’s start with the system layers:

STM32G431 MCU

Hardware Layer

=

Physical Buttons

20x20 LED Matrix

Button API

Hardware Abstraction Layer

[

N

Game Display API

l

Custom Charlieplexing Driver

-

Application Layer

GameController

/|

GameOfLife

J

N\

\‘ Driver Layer

STM32 HAL Drivers

[=

Timer Interrupts

Figure 17: Prototype N°2 — System layered architecture

This architecture helps keep the system maintainable by separating application logic, hardware

abstraction and drivers.

2 Let’s consider the lifetime cycle of the Universe from the Big Bang to its thermal death (approx. 1

0190 years). If we

generated one random grid every second, we’d need 3 160 000 000 000 universe cycles to see every possible grid.

21

https://www.wolframalpha.com/input?i=2%5E400
https://www.wolframalpha.com/input?i=2%5E400

uLife

On a more coding side we can now take a look at the class diagram:

uses patterns

N

GameController

-GameOfLife gol

-uint8_t currentPatternindex
-uint16_t stepinterval

-uint32_t lastStepTime

-bool paused

-bool splashDisplayed

-uint32_t splashStartTime
-uint32_t speedBarEndTime
-bool speedBarVisible

-int lastSpeedBarWidth

-uint32_t lastPauseBlinkTime
-bool pauseBlinkState

-uint32_t lastButton1UpdateTime
-uint32_t lastButton2UpdateTime
-static GameController* instance

+GameController()

+void init()

+void update()

+void increaseSpeed()

+void decreaseSpeed()

+void togglePause()

+volid loadRandomPattern()

+void loadNextPattern()

+void loadPreviousPattern()

+void updateUI()

+void showSpeedBar()

-static void onButton1SinglePress()
-static void onButton1DoublePress()
-static void onButton1LongPress()
-static void onButton2SinglePress()
-static void onButton2DoublePress()
-static void onButton2LongPress()

1

contains

1

uses
2

Matthieu MICHEL

GameOfLife

Button_t

-uint8_t grid[20][20]
-uint8_t nextGrid[20][20]

+GameOfLife()

+void step(boal wrap)

+void clear()

+void initFromPattern{const int pattern[20][20])
+void copyToDisplay()

+void setCell(int x, int y, bool alive)

-int countNeighbors(int x, int y, bool wrap) : const

+GPIO_TypeDef* GPIOX
+uint16_t GPIO_Pin
+ButtonState_t state

+uint32_t lastTick

+uint32_t pressDuration
+ButtonEvent_t detectedEvent
+uint8_t eventReported
+uint32_t lastUpdateTick

T

applies patterns

GOL_Pattern_t

+const char® name
+const int pattern[20][20]

+void (*onSinglePress)(void)
+void (*onDoublePress)(void)
+void (*onLongPress)(void)

1
uses GPIO

| 1

HAL_Driver

+GPIO functions
+Timer functions
+RNG functions

Figure 18: Prototype N°2 — UML Class diagram

We can observe again the separation. We have on one side the game engine managing the cellular
automaton rules and on the other side the game controller coordinating the entire system with the help
of the button management system, responsible for detecting simple, double and long presses. We also
have the preloaded patterns encoded in a separate file.

22

uLife

Matthieu MICHEL

Finally, one more interesting piece of information, the sequence diagram. It describes the series of

events happening from the start of the game and until it ends.

main.c Interface.cpp GameController GameOfLife Button Timer IRQ LED Matrix Driver
main_cpp()
Initialize buffers
GameController::init()
initFromPattern(SPLASH)
clear()
copy ToDisplay()}
>
loop [Main loop]
update()
Button_Update()
alt [If splash screen not yet displayed]
if {currentTime - splashStartTime >= SPLASH_DURATION)
splashDisplayed = true
loadRandamPattern()
paused = false
alt [If game running (Ipaused && splashDisplayed)]
if (currentTime - lastStepTime >= steplnterval)
step()
Apply Game of Life rules
copy ToDisplay()
>
lastStepTime = currentTime
updateUI()
alt [Based on button events]
onButtonXxxxPress()
Execute corresponding action
I [TIM2 Interrupt (LED
.nop Matrix)]
Update LED matrix
Charlie_SetLED(x, v, state)
main.c Interface.cpp GameController GameOfLife Button Timer IRQ LED Matrix Driver

Figure 19: Prototype N°2 — Sequence diagram

23

4.2.6 Review

I think that this final prototype is rather successful. It fills all constraints and requirements while
featuring unique features like the uniqueness of generated grids. It works greats, controls are rather
easy to use when you know them.

The only two constraints we failed to comply with are the size and screen brightness ones. First, it was
not possible to fit all the circuitry in 3x4 cm on a single side (which is a requirement), that’s why a
size of 3x5 cm was adopted instead, keeping the product rather small. Second, the display still struggles
to be bright enough. Under a strong light lit LEDs become indistinguishable from the others (the
display is still usable in normal conditions), sadly we can’t do much about it without resorting to
methods that would greatly increase the space required. At least the display is gorgeous in the dark,
with lit pixels projecting a slight glow on neighboring unlit pixels.

This board will be considered final.

4.2.7 Improvements and changes needed

No prototypes will follow this one.

24

5 3D modeling and enclosure design

5.1 Objectives

The objective of this enclosure is to protect the product from external damage, such as scratches and
impacts. Liquids and dust are out of this scope. The cover shall not apply destructive operations on the
circuit, such as glue or other permanent modification, thus making the cover entirely separate and
replaceable. The cover should also protect the user from toxic materials such as lead solder, if used in
assembly. The cover shall also be transparent to keep the display visible.

5.2 Initial concept

The initial concept was to reproduce something similar to the case used for the SMD challenge, as in,
a cover flush with the sides, like two plates covering top and bottom. However, this came with a major
failure point in our situation: the sides. On the SMD challenge, parts were far enough from the sides
to allow for walls or even slanted walls, such things are not possible here due to the row of LEDs we
have on the edge of the board.

Because of this we’ll settle on a (almost) regular case design with external walls. We’ll just make the
top of the USB-C connector flush with the case, since it’s the same height as the body of the buttons,
also in the goal of keeping the product thin. We’ll also need a cutout for USB-C cables.

5.3 Design process

The enclosure consists of two pieces joined by screws and nuts. We’ll define the top as the side with
parts and bottom the other side.

The top case consists of a 1.6 mm thick plate with 1.5 mm thick walls on the side and a 0.5 mm
clearance between board and case on each four sides. A cutout was added to make space for the USB
connector, both on top for the part itself and on the side to allow space for cables. Another cutout for
the buttons was made. It will allow the body of the buttons to sit flush with the top as to only have the
plunger stick out. Another part of the top plate was extruded, this time on the inside, to make space for
the tantalum capacitor, taller than the rest it needs extra space. And lastly, we obviously have holes for
the M2 screws (EDDM-M2-L6 on JLCMC), 2.4 mm hole diameter with 4.2 mm head diameter. This
accounts for a total height of 4.6 mm.

Here are views of the top cover:

Figure 20: Front and back views of the top cover

25

uLife Matthieu MICHEL

The bottom cover is very simple. It’s just a simple plate 2.2 mm thick with a side cutout of USB cables
and holes for screws and nuts (EMLA-S1IW-B1L1-M2 from JLCMC).

Here are views of the bottom cover:

Figure 21: Front and back view of the bottom plate
This brings us to final dimensions of 34 x 54 x 6.85 mm, keeping the final product rather thin.

Here are views of the assembled models:

Figure 22: Full 3D view of the product

5.4 Material selection

For this project, as I’'m using JLC3DP services to get my parts printed, I’ll make use of their 8001 resin
which has (citing JLC3DP) “excellent strength and toughness, high precision, and good dimensional
stability” and aside from that, it is obviously transparent. I already ordered pieces using this material
before and it should be strong enough to achieve what I want.

5.5 3D printing notes
5.5.1 Constraints

For this assembly, all constraints have been respected, they are as follow for SLA (constraints that do
not apply to our design will be omitted):

e Min. design size (mm): 5x5x5 OR 10x2x2

e Wall thickness: 0.8 mm

e Model clearance: 0.2 mm

e Holes design: for an aperture of 2.0 mm, the height must be at least 2.0mm

26

uLife Matthieu MICHEL

e Printing tolerances:
o Model tolerances: £ 0.2 mm (within 100mm), + 0.3 % (above 100mm)
o Hole tolerances: + 0.3 mm

5.5.2 Surface finish

For this print, we need a transparent finish, this is why oil spraying finish was selected.

5.6 Assembly fit & review

The case is almost perfect! Everything fits nicely, the cutout of the USB-C cable is large enough, the
cutout for the tantalum is also pinpoint sized. The screws fit in perfectly, being flush with the surface,
same for the nuts.

The first problem is caused by the screws’ placement on the original board. Due to the screws being
only at the bottom of the board, we have no downward pressure on the top of the case and due to the
flexible nature of the resin used, this leaves a small (around 0.5 mm I’d say) gap between the two parts
on the top left corner only.

Figure 23: The gap between the two cover parts

There is another major twist, being that the resin is absolutely not scratch proof. For something that is
supposed to hang with your keys, that’s problematic.

Figure 24: Scratches on the back of the case

27

To solve this problem, we’re going to try 2K clear coat, a car varnish. It’s supposed to be very thin and
to form a very hard protective layer that’s supposed to be scratch resistant. It’ll be tested in the future.

5.7 Improvements for future cases

Sadly, we have nothing to do to improve it as it depends on the holes’ placements and the material
used, which we can’t easily change it.

28

6 Final version

6.1 Final design

The final design is essentially prototype N°2 with its 3D-printed enclosure. We have a 3x5 cm PCB
featuring a 20x20 LED matrix controlled by our STM32G431CBU6. The board includes USB-C
power input with the XC6206P332MR-G LDO regulator, two TS-1109S-C-E tactile buttons for user
interaction, and the transparent resin enclosure from JLC3DP. The charlieplexing technique lets us
control all 400 LEDs using only 21 GPIO pins, which I think is pretty neat for such a compact design.

6.2 What it does

The pLife keychain runs Conway's Game of Life on its LED matrix display. Users can cycle through
pre-programmed patterns like gliders, oscillators, and other classic configurations using the two
buttons. The device can also generate random "soup" patterns using STM32's True-RNG module,
meaning you'll get grids no one had and will have in the whole universe (as I calculated earlier). Speed
control is available, and the 120 Hz refresh rate provides smooth visual updates without flicker. Just
plug it into USB-C and it starts running immediately.

6.3 Performance evaluations

The STM32G431 performs way better than the original FO30R8. With its 170 MHz clock and 569
CoreMark score, it handles the 120 Hz display refresh while running Game of Life calculations without
breaking a sweat. The 120 Hz refresh rate also gives us almost flicker-free recording, which is a nice
bonus for making demo videos. Current consumption stays well under our 250 mA requirement,
typically around 150 mA during normal operation. The display brightness is definitely improved from
prototype 1, though it still struggles against strong sunlight. At least it looks gorgeous in the dark with
that nice glow effect between pixels.

6.4 Challenges and solutions

The biggest challenge was definitely getting enough brightness from the charlieplexed matrix. We
fixed this by dropping the series resistors from 220Q and 1002 down to just 1€, pushing the LEDs to
their limits while keeping the GP1Os safe. Another possibility to improve readability would be adding
a transparent black plastic sheet over the display (like the tinted film they put on car headlights) - this
might increase contrast further and make individual pixels more distinct, though I haven't tested this
yet. Routing 400 LEDs on a 2-layer PCB was... interesting. Thank goodness for JLCPCB's basic parts
library strategy, which saved us a fortune in assembly fees. The enclosure design had to work around
those edge LEDs, so we couldn't do the flush design I originally wanted. Manufacturing came out to
€10.61 per board, which I think is pretty reasonable considering what we're getting.

29

7 Conclusion

7.1 Reflection

This project turned out way better than I expected when I first got the idea watching bitluni's videos.
The charlieplexing worked beautifully, and seeing Conway's Game of Life running on a keychain still
gives me that "wow, I actually built this" feeling. Sure, we didn't hit the original 3x4 cm target (ended
up at 3x5 cm), and the brightness could be better, but honestly? It does exactly what I wanted it to do.
The software architecture with proper separation turned out to be crucial - I'm glad I took the time to
do it right instead of just hacking something together.

7.2 Future of the project

I've already decided the next version will be a complete redesign using an OLED screen for that crisp
HD experience. No more brightness issues, no more charlieplexing headaches, just pure pixel
perfection. The OLED will also allow for a much larger grid size, giving Conway's Game of Life more
room to develop complex patterns. The current 20%20 grid is quite limiting for some of the more
interesting long-term behaviors.

The OLED version will probably let me shrink the whole thing down significantly too, maybe even
hit that original 3x4 cm target. I'll also need to address the enclosure material - the current resin
scratches way too easily for something that's supposed to hang with your keys. Either a different
material or that 2K clear coat I mentioned should solve the scratch resistance problem.

The current version serves as an excellent foundation, but an HD OLED version with a larger grid and
proper scratch resistance will be the real showstopper for the keychain.

30

8 Appendices

8.1 Datasheets
» NUCLEO-FO30R8

https://www.st.com/resource/en/user_manual/um1724-stm32-nucleo64-boards-mb1136-

stmicroelectronics.pdf

8.2 Bill of materials

Designator

C1,C2,C5,

C7,C8,C9
C3

C4,C6

Do
D1-400

i

L1

R1, R2
R3-23
SW1, SW2
U1

u2

X1

Footprint Qty.

0402 6
3528 (21 mm) 1
0402 2
DSN0603-2 1
0402 400
HRO_TYPE-C-31-M-17 1
0402 1
0402 2
0402 21
SW-SMD_4P-L4.5-W4.5-P3.00 2
SOT-23 1
QFN-48-7x7mm 1
3225-4Pin 1

8.3 Sources and references

bitluni. (2024, February 24). From blink to DIY Mini Game - Charlieplexing explained. Retrieved
from YouTube: https://www.youtube.com/watch?v=OW_Sk dbQmS§

Value
10uF

100uF

15pF
PESD5V0OX1BCSFYL
XL-1005UWC
TYPE-C-31-M-17
10nH

5k1

1R

TS-1109S-C-E
XC6206P332MR-G
STM32G431CBUx
16MHz

Comments
6.3V

6.3V

300 mA

LCSC Part #
C15525

C16133
C1548
C2443412
C20613596
C283540
C27147
C25905
C25086
C561507
Cb5446
C529356
C13738

Deegan, P. (n.d.). psychogenic/kicad-skip: kicad s-expression schematic/layout file manipulation.
Retrieved from GitHub: https://github.com/psychogenic/kicad-
skip/blob/main/src/skip/examples/charlieplex.py

JLCPCB. (2024, december 26). 3D Printing Design Guideline. Retrieved from JLC3DP:
https://jlc3dp.com/help/article/3D-Printing-Design-Guideline

JLCPCB. (n.d.). Hex nut Standard/Thin/Thickened Coarse/Fine thread. Retrieved may 4, 2025, from
JLCMC: https://jlcme.com/product/s/EO4/EMLA/FA-
%ET7%B4%AT7%ES5%9B%BA%E9%9B%B6%E4%BB%B6-%E8%9E%BA%E6%AF%8D

JLCPCB. (n.d.). Phillips Ultra Thin Head Screw. Retrieved may 4, 2025, from JLCMC:

https://jlcmc.com/product/s/E02/EDDM/FA-

%ET7%B4%AT7%E5%9B%BA%E9%9B%B6%E4%BB%B6-%E8%9E%BA%E9%92%89

PETERSEN, L. (2021, October 21). How to generate a one second interrupt using an STM32 Timer.
Retrieved from ST Community: https://community.st.com/t5/stm32-mcus/how-to-generate-a-
one-second-interrupt-using-an-stm32-timer/ta-p/49858

31

https://www.st.com/resource/en/user_manual/um1724-stm32-nucleo64-boards-mb1136-stmicroelectronics.pdf
https://www.st.com/resource/en/user_manual/um1724-stm32-nucleo64-boards-mb1136-stmicroelectronics.pdf

Samsung Electro-Mechanics. (n.d.). CLO5A106MQO5NUN | MLCC | Component Library. Retrieved
may 4, 2025, from https://weblib.samsungsem.com/mlcc/mlcc-ec-data-
sheet.do?partNumber=CLO5A106MQSNUN

Wikipedia. (n.d.). Charlieplexing. Retrieved from Wikipedia:
https://en.wikipedia.org/wiki/Charlieplexing

32

